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A theoretical formulation is proposed for forced mass transport by pressure gradients
in a liquid binary mixture around a spherical bubble undergoing volume oscillations
in a sound field. Assuming the impermeability of the bubble wall to both species,
diffusion driven by pressure gradients and classical Fick-diffusion must cancel at the
bubble wall, so that an oscillatory concentration gradient arises in the vicinity of the
bubble. The Péclet number Pe is generally high in typical situations and Fick diffusion
cannot restore equilibrium immediately, so that an asymptotic average concentration
profile may progressively build up in the liquid over large times. Such a behaviour
is reminiscent of the so-called rectified diffusion problem, leading to slow growth of
a gas bubble oscillating in a sound field. A rigorous method formerly proposed by
Fyrillas & Szeri (J. Fluid Mech. vol. 277, 1994, p. 381) to solve the latter problem is
used to solve the present one. It is based on splitting the problem into a smooth part
and an oscillatory part. The smooth part is solved by a multiple scales method and
yields the slowly varying average concentration field everywhere in the liquid. The
oscillatory part is obtained by matched asymptotic expansions in terms of the small
parameter Pe−1/2: the inner solution is required to satisfy the oscillatory balance
between pressure diffusion and Fick diffusion at the bubble wall, while the outer
solution is required to be zero. Matching both solutions yields a unique splitting
of the problem. The final analytical solution, truncated to leading order, compares
successfully to direct numerical simulation of the full convection–diffusion equation.
The analytical expressions for both smooth and oscillatory parts are calculated for
various sets of bubble parameters: driving pressure, frequency and ambient radius.
The smooth problem always yields an average depletion of the heaviest species at
the bubble wall, only noticeable for large molecules or nano-particles. For driving
pressures sufficiently high to yield inertial oscillations of the bubble, the oscillatory
problem predicts a periodic peak excess concentration of the heaviest species at the
bubble wall at each collapse, lingering on several tens of the time of the characteristic
duration of the bubble rebound. The two effects may compete for large molecules
and practical implications of this segregation phenomenon are proposed for various
processes involving acoustic cavitation.

1. Introduction
Radially oscillating bubbles forced by a sound field are commonly encountered in

acoustic cavitation and sonoluminescence experiments (Crum et al. 1999). Generally,
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the liquid surrounding such bubbles is not pure and involves various chemical species,
which may either participate in chemical reactions, or undergo phase transitions,
such as crystallization processes. The kinetics of such processes depends on the
concentrations of the species and may therefore be influenced by any variation of the
spatial homogeneity of the mixture.

Pressure gradients may be a possible source of mixture segregation. Following
diffusion theory (Bird, Stewart & Lightfoot 1960; Hirschfelder, Curtiss & Bird 1967),
when a mixture of two species is subjected to a pressure gradient, the lighter one is
pushed toward low-pressure regions. This forced diffusion process, known as pressure
diffusion, generally remains weak unless the liquid is submitted to high-pressure
gradients, as in ultracentrifuge applications where it is used profitably to separate
large molecular weight species from a solvent (Archibald 1938). Pressure diffusion
is also responsible for gas stratification in a quiescent atmosphere, or solute–solvent
segregation in long sedimentation columns (Mullin & Leci 1969; Larson & Garside
1986). Besides, the effect of pressure diffusion, along with thermal diffusion, on the
segregation of a gas mixture inside a radially oscillating bubble has been investigated
by Storey & Szeri (1999) in the context of sonoluminescence.

When a bubble is driven in radial motion by a high-amplitude oscillating pressure
field, pressure gradients arise in the liquid, as a result of the bubble wall acceleration.
Inertial cavitation is a situation where the bubble suffers an explosive expansion
followed by a violent collapse. In this case, the pressure gradient reaches a very
high value near the end of the collapse, owing to the strong gas compression in the
bubble. The segregation of two species by pressure diffusion in the neighbourhood of
a cavitation bubble may therefore notably influence the liquid homogeneity.

The similar problem of mass transport of a gas dissolved in a liquid around a
bubble undergoing volume oscillations has been studied extensively (Hsieh & Plesset
1961; Eller & Flynn 1965; Fyrillas & Szeri 1994, 1995): the variations of the gas
concentration at the bubble wall, driven by the bubble oscillations, yield a non-
zero average gas flux toward the bubble, reversing its natural dissolution process,
a phenomenon known as rectified diffusion. In this case, the dissolved gas flux in
the liquid arises as a consequence of the asymmetry in the behaviour of the two
components at the bubble wall: the gas can cross the interface, the liquid cannot. In
the present problem, assuming a binary mixture of two non-volatile and non-surface-
active fluids, the bubble interface acts as a barrier for the two species, which would
prohibit any relative flux. However, if pressure diffusion is taken into account, a new
asymmetry between the two components arises, owing to their different densities, and
the pressure gradient near the bubble wall separates the two species. Since the net
flux across the bubble wall of any of the two species must be zero, a non-zero Fick
diffusion flux must exactly balance the pressure diffusion flux. Thus, a concentration
gradient should appear near the bubble wall and by continuity in the whole liquid.
Since the pressure gradient reverses as the bubble oscillates, it is clear that the
concentration of each species is an oscillatory quantity, but the question also arises
of a possible average effect, building over several periods, as observed for rectified
diffusion.

In the present paper, an approximate analytical expression of the concentration
field in the liquid is sought in order to be able to draw some conclusions for a given
mixture and given bubble parameters, namely the amplitude of the driving pressure,
its frequency and the ambient radius of the bubble. Since the problem has some
common characteristics with rectified diffusion, the solution method proposed by
Fyrillas & Szeri (1994) will be used. The concentration field is cut into two parts: the
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oscillating field is required to fulfil the complicated oscillatory part of the boundary
condition at the bubble wall and is non-zero only in a thin boundary layer near the
bubble; the smooth field satisfies the remaining part of the boundary condition and is
uniformly valid everywhere in the liquid. No specific assumption is made concerning
bubble dynamics, apart from its periodic motion, so that the solution obtained is
immediately applicable once the bubble radius is known as a function of time.

The paper is organized as follows: § 2 presents the main convection–diffusion
equation along with boundary conditions and the splitting of the problem in two parts.
In § 3, the oscillatory problem is solved and the splitting is determined unambiguously.
The smooth problem is solved in § 4. In § 5, the analytical results are first validated by
comparing them to a full numerical solution of the partial differential equation, then,
the influence of the bubble parameters on the magnitude of the segregation effect
is investigated. In § 6, the model is finally applied to typical mixtures of water with
either small or large molecules, and the results are discussed.

2. Formulation
2.1. Bubble motion and liquid fields

We will consider a single bubble oscillating in a liquid mixture of infinite extent, forced
by a oscillating pressure field far from the bubble p∞(t) = p0(1 − P cosωt), where ω

is the angular frequency, P the dimensionless forcing pressure and p0 the hydrostatic
pressure. The motion of such a bubble has been widely described in the literature
since the early work of Lord Rayleigh and several refinements of the basic model can
be found, including thermal behaviour of the gas, liquid compressibility effects and
liquid evaporation at the bubble wall (see Prosperetti 1999; Brenner, Hilgenfeldt &
Lohse 2002, for a recent review).

The model presented here is in itself independent of the specific bubble dynamics
model, and we defer the choice of the differential equation governing the radial motion
to § 5. However, the mass transport equation used in this work requires analytical
expressions of the velocity and pressure fields in the liquid, and for the sake of
simplicity, we will assume an iso-volume motion of the liquid. Besides, the potential
character of the flow is ensured by the spherical symmetry, and the potential φ̃ and
velocity fields ṽ can be easily obtained from mass conservation:

φ̃(r, t) = − 1

4πr

dṼ

dt
, (2.1)

ṽ(r, t) =
r

4πr3

dṼ

dt
, (2.2)

where Ṽ is the time-dependent bubble volume, and r the distance from the centre
of the bubble. Then, using the unsteady Bernoulli law for potential flows between a
point in the liquid of radial coordinate r and a point infinitely far from the bubble,
the pressure field in the liquid is

p̃(r, t) = p∞(t) + ρ

[
1

4πr

d2Ṽ

dt2
− 1

32π2r4

(
dṼ

dt

)2 ]
. (2.3)

The validity of the iso-volume assumption is questionable for strong motion of the
bubble, involving wall velocities near to or greater than the speed of sound in the
liquid. Accounting for liquid compressibility results in corrections of the order of
the Mach number in both the velocity and pressure field, and therefore also in the
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bubble dynamics equation (Prosperetti & Lezzi 1986). The main physical consequence
of liquid compressibility is the formation of shock-waves at the end of the bubble
collapse (Hickling & Plesset 1964). Clearly, since shock-waves are in essence strong
pressure gradients, neglecting their effect on pressure diffusion may appear as a
rough approximation. However, taking them into account would require cumbersome
expressions of the velocity and pressure fields (see for example, the second-order
expressions of Tomita & Shima 1977; Fujikawa & Akamatsu 1980, obtained by the
PLK strained-coordinates method). This constitutes a technical problem, especially for
the velocity field: as will be seen below, the convective term in the transport equation
can easily be suppressed by a convenient change of variable in the incompressible case.
There is no evidence that a similar change of variable could be found in the case of a
compressible velocity field, which would make the problem untractable. We therefore
chose to sacrifice the compressibility hypothesis in order to draw a general picture
of the pressure diffusion effect. We will, however, make an exception and keep the
compressibility-induced correction terms in the bubble equation, in order to obtain a
more realistic model for the bubble dynamics. Moreover, since the shock-waves issue
is of practical interest, additional qualitative comments will be proposed in § 6.

Finally, since the liquid considered here is a mixture whose spatial homogeneity is
investigated, the average mixture density may not be constant. It may reasonably be
assumed that the occurrence of such inhomogeneities significantly affects neither the
liquid fields, nor the bubble motion.

2.2. Mass transport

The mass conservation of a species A in a binary mixture is expressed as

∂ρA

∂t
+ ∇ · (ρAṽ) = −∇ · jA, (2.4)

where ρA is the local density of species A, ṽ is the mass-averaged mixture velocity.
The mass diffusion flux jA is, taking into account pressure diffusion (Bird et al. 1960;
Hirschfelder et al. 1967)

jA = −D

[
ρ∇ωA +

MAMB

MRT
ρωA

(
V̄A

MA

− 1

ρ

)
∇p̃

]
, (2.5)

where ωA = ρA/ρ is the mass fraction of species A, MA, MB and M are the respective
molar weight of species A, B and of the mixture, ρ is the mean density of the mixture,
V̄A the specific molal volume of species A, and R the universal gas constant. The first
term in (2.5) represents the Fick diffusion flux, driven by a concentration gradient,
and the second is the pressure diffusion flux, driven by the local pressure gradient.

Using the mixture mass-conservation equation ∂ρ/∂t + ∇ · (ρṽ) = 0, and inserting
the flux expression (2.5) in (2.4), we obtain:

ρ

(
∂ωA

∂t
+ ṽ · ∇ωA

)
= D∇ ·

{
ρ

[
∇ωA +

MAMB

MRT
ωA

(
V̄A

MA

− 1

ρ

)
∇p̃

]}
. (2.6)

Although it is tempting to simplify both sides of (2.6) by ρ, the latter quantity is
not constant since it depends on the local mass fraction ωA, which is space and
time dependent. The same problem arises with the appearance of the mean molar
weight M and again the density ρ in the pressure diffusion term of (2.6), which
depends on the local composition of the mixture. This has the strong consequence
that rigorously, (2.6) is nonlinear. In view of the method we plan to use for the
resolution of the problem, a linearization of the problem is necessary, paying the price
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of some additional assumptions. It is shown in Appendix A that in the limit of a
dilute mixture (ωA � 1), the mixture density ρ is approximately constant and equal
to MB/V̄B and (2.6) may be simplified as

∂ωA

∂t
+ ṽ · ∇ωA = D∇ ·

[
∇ωA +

MA

RT
ωA

(
V̄A

MA

− V̄B

MB

)
∇p̃

]
, (2.7)

or, in spherical coordinates:

∂ωA

∂t
+ ṽ(r, t)

∂ωA

∂r
=

D

r2

∂

∂r

[
r2

(
∂ωA

∂r
+ β̃ωA

∂p̃

∂r
(r, t)

)]
, (2.8)

where ṽ(r, t) and p̃(r, t) are given by (2.2) and (2.3), and β̃ is:

β̃ =
MA

RT

(
V̄A

MA

− V̄B

MB

)
. (2.9)

This conservation equation should be completed with appropriate boundary
conditions at the bubble wall and infinitely far from the bubble. Both components are
assumed non-volatile and therefore cannot cross the bubble wall. Thus, the diffusive
flux jA should be zero at the bubble wall:

∂ωA

∂r
(r = R̃(t), t) + β̃ωA(r = R̃(t), t)

∂p̃

∂r
(r = R̃(t), t) = 0. (2.10)

We emphasize that the expression of the diffusive flux at the bubble wall must
include the pressure diffusion term, consistently with the transport equation, (2.8).
A similar boundary condition is used in centrifuge equations (Archibald 1938), to
express the impermeability of the sample-tube extremities to any species. The non-
volatility of the species may appear as a drastic limitation. However, relaxing this
hypothesis would have the disadvantage of coupling the diffusion problem in the
liquid with the diffusion problem of vapour through the uncondensable gas filling the
bubble. Moreover, the problem would require a liquid–vapour equilibrium condition
at the bubble wall, which may take a complex form in the case of mixtures. Finally,
several related issues such as evaporation–condensation kinetics, or chemical reactions
(Storey & Szeri 2000) may further complicate the problem. We therefore leave aside
these refinements for now, and concentrate on the effects of pressure diffusion alone.

Far from the bubble, the concentration field remains undisturbed by the bubble
oscillations, so that

ωA(r → ∞, t) = ωA0, (2.11)

and finally, the liquid mixture is initially assumed homogeneous in space:

ωA(r, t = 0) = ωA0. (2.12)

2.3. Non-dimensionalization

The equations of the problems are non-dimensionalized as follows: the natural length
scale is the ambient bubble radius R̃0, the time scale is ω−1, the inverse of the driving
frequency. The pressure scale is set as ρ0R̃

2
0ω

2/2, which is the dynamic pressure of the
liquid displaced by the bubble. We therefore set

r = R̃0ξ, t = τ/ω, p̃ = 1
2
ρR̃2

0ω
2p.

The bubble instantaneous radius and volume are non-dimensionalized by their
ambient values:

R̃ = R̃0R, Ṽ = 4
3
πR̃3

0V.
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In the new variables, the dimensionless velocity and pressure field in the liquid are

v(ξ, τ ) =
V̇

3ξ
, (2.13a)

p(ξ, τ ) =
2

3

V̈

ξ
− 1

9

V̇ 2

ξ 4
, (2.13b)

where here, and in what follows, overdots denote time derivatives with respect to the
dimensionless time variable τ . The concentration of species A is non-dimensionalized
by

C =
ωA

ωA0

− 1. (2.14)

The quantity C represents the segregation level: a positive value of C expresses a
local excess of species A above the concentration at rest. The mass transport equation
becomes

∂C

∂τ
+

(
V̇

3ξ 2

)
∂C

∂ξ
=

1

Pe

1

ξ 2

∂

∂ξ

{
ξ 2

[
∂C

∂ξ
+ β(C + 1)

∂p

∂ξ

]}
, (2.15)

where Pe = R̃2
0ω/D is the Péclet number, and the dimensionless number β is

β = β̃ 1
2
ρR̃2

0ω
2. (2.16)

For later use, we separate the respective contributions of the mixture and the bubble
to the dimensionless parameter β , and write

β = βmR̃2
0ω

2, (2.17)

where

βm = 1
2
β̃ρ =

1

2

MA

RT

(
V̄A

MA

MB

V̄B

− 1

)
, (2.18)

depends only on the mixture considered.
The boundary and initial conditions become, in dimensionless variables

∂C

∂ξ
(ξ = R(τ ), τ ) + β[C(ξ = R(τ ), τ ) + 1]

∂p

∂ξ
(ξ = R(τ ), τ ) = 0, (2.19a)

C(ξ → ∞, τ ) = 0, (2.19b)

C(ξ, τ = 0) = 0. (2.19c)

The intrinsic difficulties in the resolution of the above governing equations are similar
to those encountered in the rectified diffusion problem (Hsieh & Plesset 1961; Eller
& Flynn 1965; Fyrillas & Szeri 1994, 1995): on one hand, the boundary condition
(2.19a) at the bubble surface is applied at a moving boundary and is furthermore
unsteady. On the other hand, the velocity field is inhomogeneous and also unsteady.
The solution to overcome the difficulty of the moving boundary and the oscillating
velocity field is to define a Lagrangian radial coordinate, as first suggested by Plesset
& Zwick (1952), by σ =(ξ 3 − V (τ ))/3, which represents physically the dimensionless
volume between the bubble wall and the point of interest in the liquid. A specific
liquid particle moves with a constant σ (under the incompressibility hypothesis) and
an observer moving with such a particle would see only the diffusive transport of
species. This may be readily seen by expressing (2.15) in the Lagrangian coordinates
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(σ, τ ):

∂C

∂τ
=

1

Pe

∂

∂σ

[
A(σ, τ )

∂C

∂σ
+ βB(σ, τ )(C + 1)

]
, (2.20)

where

A(σ, τ ) = (3σ + V )4/3, (2.21a)

B(σ, τ ) = −2

3
V̈ +

4

9

V̇ 2

(3σ + V )
. (2.21b)

The boundary and initial conditions (2.19) become

∂C

∂σ
(0, τ ) + β

B(0, τ )

A(0, τ )
(C(0, τ ) + 1) = 0, (2.22a)

C(σ → ∞, τ ) = 0, (2.22b)

C(σ, τ = 0) = 0. (2.22c)

It can readily be seen that the convective term of (2.15) has indeed disappeared and
that the boundary condition at the bubble wall is now applied at a fixed point, thanks
to the change of variable.

The problem defined by (2.20)–(2.22) shows some resemblance to the rectified
diffusion problem and thus, the splitting-method proposed by Fyrillas & Szeri (1994,
1995, 1996) can profitably be used here. For self-completeness, we will recall here
the main lines of its underlying physical basis. For rectified diffusion, the oscillatory
gas pressure in the bubble drives the gas concentration in the neighbouring liquid in
oscillation, thus producing a periodic inversion of the concentration gradient. This
rapidly oscillating gradient is counteracted by molecular diffusion, but owing to the
large value of the Péclet number, the equilibrium cannot be restored immediately.
This delay produces a long-term average diffusion effect, on a time scale larger than
the oscillation period by a factor of the order of Pe. Therefore, the concentration
field varies on two time-scales.

The present problem shares this property with rectified diffusion, but here, the
source of the concentration gradient is the segregation of species by pressure diffusion,
both in the liquid bulk and at the bubble wall (see (2.20) and (2.22a), respectively).
Moreover, it can easily be seen by looking at (2.13b) or (2.21b) that pressure diffusion
is not symmetric over one oscillation period, owing to the V̇ 2 term, representing
the convective acceleration of the fluid in spherical symmetry. Because of this term,
pressure increases when travelling away from the bubble, which may be understood
from the Bernoulli law: because of spherical symmetry, velocity decreases with the
distance to the bubble and this should be balanced by a pressure increase.

For both rectified diffusion and the present problem, the existence of two time
scales justifies a multiple-scales method, but there remains a technical difficulty in the
unsteady character of the boundary conditions at the bubble wall. If the multiple-
scales method were to be applied directly to the set of equations (2.20), (2.22), one
would be met with the impossibility for the solution at leading order to fulfil the
oscillating boundary condition (2.22a). This difficulty is overcome by splitting the
concentration field into two parts: an oscillatory part, which satisfies the oscillating
part of the boundary condition, and a smooth part, to which the remaining part of
the boundary condition should be ascribed. The oscillating part represents physically
the perturbation of the concentration field imposed by the bubble wall forcing term,
and is designed to differ from zero only in a boundary layer of thickness Pe−1/2. The
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smooth part extends in the whole liquid and varies on both the oscillation time scale
1/ω and a slow time scale of order Pe/ω.

2.4. Splitting of the problem

We set the concentration field as C(σ, τ ) = Cosc(σ, τ ) + Csm(σ, τ ), where Cosc is the
oscillatory part, and Csm the smooth part. We then split the governing equations into
an oscillatory part and a smooth part. The oscillatory problem is defined by

∂Cosc

∂τ
=

1

Pe

∂

∂σ

[
A(σ, τ )

∂Cosc

∂σ
+ βB(σ, τ )Cosc

]
, (2.23a)

∂Cosc

∂σ
(0, τ ) + βH (τ )[Cosc(0, τ ) + 1] = −G − βH (τ )Csm(0, τ ), (2.23b)

and the smooth problem is

∂Csm

∂τ
=

1

Pe

∂

∂σ

[
A(σ, τ )

∂Csm

∂σ
+ βB(σ, τ )(Csm + 1)

]
, (2.24a)

∂Csm

∂σ
(0, τ ) = G. (2.24b)

The constant G is introduced to add a degree of freedom in the separation process
and will be determined unambiguously by using a splitting condition, to be defined
in the next section. In the boundary condition (2.23b), the function H (τ ) is defined
by

H (τ ) =
B(0, τ )

A(0, τ )
, (2.25)

and represents the dimensionless pressure gradient at the bubble wall.
Finally, both oscillatory and smooth fields are required to fulfil the boundary

condition far from the bubble (2.22b) and the initial condition (2.22c), so that

Csm(σ → ∞, τ ) = Csm(σ, 0) = 0, (2.26)

Cosc(σ → ∞, τ ) = Cosc(σ, 0) = 0. (2.27)

3. The oscillatory problem
Following Fyrillas & Szeri (1995), we use a matched asymptotic expansion to solve

the oscillatory problem: the inner solution must fulfil the bubble wall boundary
condition (2.23b) while the outer solution is required to be identically zero. To
determine the inner approximation of the oscillatory solution, we define a re-scaled
Lagrangian space-coordinate by s = Pe1/2σ . Furthermore, we use the nonlinear time
τ̂ first suggested by Plesset & Zwick (1952), which arises from the spherical symmetry
of the problem:

τ̂ =

∫ τ

0

R4(τ ′) dτ ′, (3.1)

and for further use, we also define the nonlinear period

T̂ =

∫ 2π

0

R4(τ ′) dτ ′. (3.2)

Taking τ̂ as the new time variable, (2.23a) becomes

∂Cosc

∂τ̂
=

∂

∂s

[
A′(s, τ̂ ; Pe)

∂Cosc

∂s
+

1

Pe1/2
βB ′(s, τ̂ ; Pe)Cosc

]
, (3.3)
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where

A′(s, τ̂ ; Pe) = R−4A(Pe−1/2s, τ ) =

(
1 +

1

Pe1/2

3s

V

)4/3

, (3.4a)

B ′(s, τ̂ ; Pe) = R−4B(Pe−1/2s, τ ) = −2

3

V̈

V 4/3
+

4

9

V̇ 2

V 7/3

1

1 +
1

Pe1/2

3s

V

, (3.4b)

and the bubble wall condition reads

Pe1/2 ∂Cosc

∂s
(0, τ̂ ) + βH (τ̂ ) [Cosc(0, τ̂ ) + 1] = −G − βH (τ̂ )Csm(0, τ̂ ). (3.5)

The outer limit of the inner approximation should match the outer approximation
which is identically zero, so that Cosc(s, τ̂ ) should satisfy

lim
s→∞

Cosc(s, τ̂ ) = 0. (3.6)

We now assume an asymptotic expansion for Cosc in the Pe−1/2 parameter:

Cosc(s, τ̂ ) = Cosc
0 (s, τ̂ ) +

1

Pe1/2
Cosc

1 (s, τ̂ ) +
1

Pe
Cosc

2 (s, τ̂ ) . . . , (3.7)

and we also expand functions A′ and B ′ given by (3.4), as well as the separation
constant G appearing in (2.23b) and(2.24):

A′(s, τ̂ ) = 1 + Pe−1/2A′
1(s, τ̂ ) + Pe−1A′

2(s, τ̂ ) . . . ,

B ′(s, τ̂ ) = B ′
0(τ̂ ) + Pe−1/2B ′

1(s, τ̂ ) + Pe−1B ′
2(s, τ̂ ) . . . ,

G = G0 + Pe−1/2G1 + Pe−1G2 . . . .

A hierarchy of inhomogeneous diffusion problems is obtained, all sharing the same
form. The general solution of such problems is detailed in Appendix B, which
also yields a splitting-condition necessary to ensure the matching equation (3.6). In
the present case, the oscillatory problem at each order has a Neumann boundary
condition, whereas the oscillatory problems in the analysis of surfactant-enhanced
rectified diffusion by Fyrillas & Szeri (1995) involve a Dirichlet boundary condition.
The difference arises from the presence of the Péclet number in the boundary condition
in the latter problem (see equation (2.4) in Fyrillas & Szeri 1995), whereas the
boundary condition (2.22a) in the present problem is Péclet independent. This is
because both pressure and Fick diffusion terms are proportional to the diffusion
coefficient, which thus cancels out in the null total flux condition (2.10) at the bubble
wall.

For further use, it is useful to note that the H function given by (2.25) can also be
expressed in the following forms

H (τ̂ ) = B ′
0(τ̂ ) = −2

3

V̈

V 4/3
+

4

9

V̇ 2

V 7/3
= −2

R̈

R2
. (3.8)

We now turn to solve the oscillatory problems at each order.

3.1. Zeroth-order

The oscillatory problem at order 0 is

∂Cosc
0

∂τ̂
=

∂2Cosc
0

∂s2
,

∂Cosc
0

∂s
(0, τ̂ ) = 0, Cosc

0 (s → ∞) = 0. (3.9a–c)
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The solution is clearly the null one. This can be easily understood on a physical basis
as pressure diffusion does not act to this order, neither in the liquid bulk, nor at the
bubble wall, as can be seen in (3.9a–c). Therefore the liquid mixture is submitted only
to classical molecular diffusion. Only a non-homogeneous boundary condition could
produce a concentration gradient which is not the case, since to this order, the bubble
wall condition imposes only a zero concentration gradient. This is why, contrarily to
rectified diffusion problems (Fyrillas & Szeri 1994, 1995), the zeroth-order oscillatory
solution is zero in the present problem.

3.2. First-order

At order 1, using the nullity of Cosc
0 (0, τ̂ ), we obtain:

∂Cosc
1

∂τ̂
=

∂2Cosc
1

∂s2
, (3.10a)

∂Cosc
1

∂s
(0, τ̂ ) + βH (τ̂ ) = −G0 − βH (τ̂ )Csm

0 (0, τ̂ ), (3.10b)

Cosc
1 (s → ∞) = 0. (3.10c)

The splitting-condition (B 7) obtained in Appendix B yields the separation constant
G0:

G0 = −β
〈
H (τ̂ )

[
Csm

0 (0, τ ) + 1
]〉

τ̂
. (3.11)

The part of the boundary condition ascribed to Cosc
1 is therefore

∂Cosc
1

∂s
(0, τ̂ ) = β[〈H (τ̂ )〉τ̂ − H (τ̂ )]

[
Csm

0 (0) + 1
]
,

where we have used the result, to be demonstrated in § 4, that Csm
0 is independent

of the fast time-variable τ̂ . The asymptotic solution C̄osc
1 (s, τ̂ ) of equations (3.10 a–c)

can be obtained from Appendix B: expanding H (τ̂ ) as a Fourier series,

H (τ̂ ) = 〈H (τ̂ )〉τ̂ +

m=+∞∑
m=−∞
m	=0

hm exp

(
2imπ

τ̂

T̂

)
, (3.12)

and using (B 8), the oscillatory concentration field is

C̄osc
1 (s, τ̂ ) = β

[
Csm

0 (0) + 1
]( T̂

2π

)1/2

×
m=+∞∑
m=−∞
m	=0

hm

|m|1/2
exp

[
i

(
2πm

τ̂

T̂
− εm

π

4

)
− (εmi + 1)

(
|m|π
T̂

)1/2

s

]
, (3.13)

where εm = sgn(m). The first-order oscillatory solution C̄osc
1 depends on the boundary

value of the zeroth-order smooth solution Csm
0 (0), which is to be determined in the

next section.

3.3. Second-order

The second-order oscillatory problem allows the determination of the separation
constant G1, which, as will be seen below, is enough to solve the smooth problem up
to order Pe−1. The calculation is detailed in Appendix C and yields

G1 = −β
〈
H (τ̂ )

[
Csm

1 (0, τ )
]〉

τ̂
. (3.14)
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The second-order oscillatory field Cosc
2 could also be obtained analytically by using

Appendix B, but is not required in the present analysis.

4. The smooth problem
To treat the smooth problem, time is first rescaled by defining the slow time variable

λ= τ/Pe, and the smooth field Csm is considered as a function of both fast and slow
time variables, respectively τ and λ. The smooth equation (2.24a) reads, in the new
variables

∂Csm

∂τ
+

1

Pe

∂Csm

∂λ
=

1

Pe

∂

∂σ

[
A(σ, τ )

∂Csm

∂σ
+ βB(σ, τ ) (Csm + 1)

]
. (4.1)

The smooth field Csm(σ, τ, λ) is next expanded in the small parameter Pe−1/2:

Csm(σ, τ, λ) = Csm
0 (σ, τ, λ) +

1

Pe1/2
Csm

1 (σ, τ, λ) +
1

Pe
Csm

2 (σ, τ, λ) + . . . , (4.2)

which, once introduced in (4.1), yields a hierarchy of equations in the small parameter
Pe−1/2. As in Fyrillas & Szeri (1995), the zeroth- and first-order smooth equations
read simply:

∂Csm
0

∂τ
= 0 ⇒ Csm

0 (σ, λ),
∂Csm

1

∂τ
= 0 ⇒ Csm

1 (σ, λ), (4.3a,b)

which indicates that Csm
0 and Csm

1 vary with time only through the slow time scale
λ. The dependence of these two fields on σ and λ can be obtained by writing
the problems at orders 2 and 3, and using a non-secularity condition. The smooth
boundary condition (2.24b) is written at each order by using the expressions (3.11)
and (3.14) of the separation constants G0 and G1, and asymptotic solutions for λ→ ∞
are sought. The technical details of the calculation can be found in Appendix D (see
also Fyrillas & Szeri 1994, 1995). The resulting asymptotic zeroth-order smooth field
reads

Csm
0,∞(σ ) = exp

[
β

∫ ∞

σ

〈B(σ ′, τ )〉τ

〈A(σ ′, τ )〉τ

dσ ′
]

− 1, (4.4)

while the asymptotic first-order smooth field Csm
1,∞ is zero, so that (4.4) represents, in

fact, the asymptotic smooth solution up to order 1/Pe.

5. Numerical results
5.1. Bubble dynamics

We will consider hereafter the case of an argon bubble in a mixture of water and
some other species at ambient temperature T = 298 K. The temporal evolution of the
bubble radius is calculated by solving the Keller-Miksis equation (Keller & Miksis
1980; Hilgenfeldt, Lohse & Brenner 1996):

R̃
d2R̃

dt2

(
1 − 1

c

dR̃

dt

)
+

3

2

(
dR̃

dt

)2 (
1 − 1

3c

dR̃

dt

)

=
1

ρ

{(
1 +

1

c

dR̃

dt

)
[p̃g − p0(1 − P cosωt)] +

R̃

c

dp̃g

dt
− 2σ

R̃
− 4µ

R̃

dR̃

dt

}
, (5.1)

where R̃ is the bubble radius, p̃g the gas pressure in the bubble, assumed
homogeneous, c = 1500 m s−1, ρ = 998 kg m−3, µ = 10−3 kg m−1 s−1 are, respectively,
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the sound velocity, density and dynamic viscosity of water, p0 = 101325 Pa the
pressure in the liquid at rest, σ = 0.072 Nm−1 the water–gas surface tension, P the
dimensionless driving pressure amplitude and ω the angular driving frequency.

Two different models can be used for the bubble interior. The first assumes an
isothermal behaviour and a van der Waals equation of state, so that the bubble
internal pressure is

p̃g =

(
p0 +

2σ

R̃0

)(
R̃3

0 − h3

R̃3 − h3

)
, (5.2)

where R̃0 is the ambient radius of the bubble and h the van der Waals hard-core
radius. A refined model accounting for water evaporation at the bubble wall and
temperature gradients in the bubble was also used. The details of the model can be
found in Toegel et al. (2000) and Storey & Szeri (2001). It is known that accounting
for such effects reduces the violence of the collapse and may therefore influence the
segregation process investigated in this paper, as will be seen below.

In the following sections, equation (5.1) will be solved for various sets of parameters
ω, P and R̃0, over a number of periods sufficiently large to obtain steady-state
oscillations. The corresponding bubble volume and its time derivatives on the last
period are stored in tables, from which the time- and space-dependent coefficients
A(σ, τ ) and B(σ, τ ) can be calculated by equations (2.21 a,b) when required.

5.2. Comparison with full simulation

In order to check the validity of the approximation obtained from the splitting
method, numerical simulations of the full convection–diffusion problem, (2.20)–(2.22),
have been performed, with the help of the FEMLAB software. The present set of
equations is recast without further difficulty in the canonical coefficient form of partial
differential equations allowed in FEMLAB. The interval [0, ∞] was mapped to [0, 1]
by using the variable change x = 1/(σ + 1), the interval [0, 1] was non-uniformly
meshed to trap the boundary layer near the bubble wall, and mesh convergence
studies were performed to ensure good accuracy of the result.

In order to test the analytical approximation obtained in the preceding section, we
first recall that the analytical method yields the concentration field as

C(σ, τ ) = Csm
0 (σ, λ) +

1

Pe1/2
Csm

1 (σ, λ) +
1

Pe1/2
Cosc

1 (σ, τ ) + O

(
1

Pe

)
,

since Cosc
0 = 0. For large times (λ→ ∞), Csm

0 reaches its asymptotic limit Csm
0,∞ and

as shown above, Csm
1 vanishes. The oscillatory field Cosc

1 should reach its asymptotic
value (3.13) in a few periods, and therefore one should have

C(σ, τ ) ∼
λ→ ∞ Csm

0,∞(σ ) +
1

Pe1/2
C̄osc

1 (σ, τ ) + O

(
1

Pe

)
. (5.3)

Further averaging on time τ̂ over one period, we obtain

〈C(σ, τ )〉τ̂
∼

λ→ ∞ Csm
0,∞(σ ) + O

(
1

Pe

)
, (5.4)

since from equation (3.13), C̄osc
1 has a null τ̂ -average.

Both equations (5.3) and (5.4) were checked against direct numerical simulation
for an argon bubble of ambient radius R0 = 4 µm driven by pressure fields of
dimensionless amplitudes P = 0.3, 0.6 and 0.8 and frequency 26.5 kHz. Since our
aim is to check the analytical model against a numerical result, we take an arbitrary
value β = −10−5 rather than specifying species A mixed with water. In order to reach
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Figure 1. Comparison between the full numerical solution and the analytical approximation
for a 4 µm argon bubble in water in a 26.5 kHz acoustic field of amplitude P = 0.6. The Péclet
number is 500 and the parameter β is −10−5. Thin solid lines, concentration profiles Cnum(σ, τ )
obtained by numerical simulation at different phases of the bubble oscillation; thin dashed
line, analytical predictions Csm

0,∞(σ ) +Pe−1/2C̄osc
1 (σ, τ ); thick solid line, nonlinear numerical

average of the numerical profile over one period; thick dashed line, asymptotic zeroth-order
smooth concentration profile Csm

0,∞(σ ). The inset shows a more detailed comparison between
the numerical average and the smooth solution.

the limit λ→ ∞ numerically, the final time of the simulation was chosen sufficiently
large that the system nearly reaches its steady state. The analysis of the smooth
problem shows that its steady state should be obtained within a number of periods
of the order of Pe. We therefore chose arbitrarily Pe = 100 and Pe = 500 in order
to obtain reasonable simulation times. We found in our examples that no noticeable
change from one period to the next could be observed after about 2Pe periods. The
last oscillation period of the concentration field Cnum(σ, τ ) obtained numerically was
stored, the nonlinear time τ̂ was calculated, and the nonlinear-average 〈Cnum(σ, τ )〉τ̂

was calculated over one period at each spatial point σ . The smooth concentration
field Csm

0,∞(σ ) was evaluated by calculating the integral in equation (4.4) with a
Gauss–Jacobi method (see Louisnard & Gomez 2003, Appendix B for details). The
asymptotic oscillatory field was calculated from equation (3.13), after evaluating the
Fourier coefficients hm of H (τ̂ ) by a fast Fourier transform (FFT).

Figure 1 shows typical concentration profile results for a 4 µm argon bubble in
water, driven by an oscillatory pressure of 0.6 bar amplitude and 26.5 kHz frequency,
and Pe = 500. The dashed lines represent the analytical predictions and the solid ones
are the numerical results. The total concentration profile (thin lines) is drawn at four
distinct phases of the acoustic period in order to check equation (5.3). It is seen that
the analytical predictions are in excellent agreement with the numerical result. We also
display in figure 1 the average 〈Cnum(σ, τ )〉τ̂ (thick solid line) along with the analytical
prediction Csm

0,∞(σ ) (thick dashed line). It can be seen that both quantities are in
excellent agreement (see the magnification in the inset) and we conclude that equation
(5.4) is fulfilled. Besides, it is expected that the analytical approximation would
progressively break as the asymptotic parameter Pe−1/2 increases. Calculations with
a smaller Péclet number (Pe = 100, not presented here), show that this is indeed the
case, and yielded a maximum relative error on the oscillatory field amounting to 11%.
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Figure 2. Comparison between the analytical oscillatory concentration (dashed line)
Pe−1/2C̄osc

1 (0, τ ) at the bubble wall and the numerical solution Cnum(0, τ ) − Csm
0,∞(0) (solid

line) for a 4 µm argon bubble driven at P =0.8 and 26.5 kHz. The Péclet number is 100 and
the parameter β is −10−5.

Another validation of the model can be seen in figure 2, which compares the
oscillatory part of the numerical solution at the bubble wall Cnum(0, τ ) − Csm

0,∞(0) to

the analytical solution Pe−1/2C̄osc
1 (0, τ ) over one period of oscillation, for a driving

pressure of amplitude P =0.8, and Pe = 100: here again, the two results are in
excellent agreement.

5.3. Parameter-space exploration

The validation of the analytical model being achieved, we now turn to investigate
how the smooth and oscillatory parts vary with the bubble parameters (R0, P , ω). In
order to obtain an immediate view of the magnitude of the segregation process, we
will focus on the values of the two fields at the bubble wall.

5.3.1. Smooth part

The smooth concentration at the bubble wall Csm
0,∞(0) is obtained by setting σ = 0

in equation (4.4):

Csm
0,∞(0) = exp(βI ) − 1, (5.5)

where

I =

∫ ∞

0

〈B(σ ′, τ )〉τ

〈A(σ ′, τ )〉τ

dσ ′. (5.6)

The value of integral I depends only on the bubble dynamics, and in order to find a
picture independent of the choice of a specific mixture, but containing all the bubble
data, we use the definition (2.17) of the parameter β to obtain

Csm
0,∞(0) = exp(βmR̃2

0ω
2I ) − 1,

where βm, defined by equation (2.18) depends only on the mixture considered. Thus,
the value of R̃2

0ω
2I will be calculated for various bubble parameters and Csm

0,∞(0) can
then easily be deduced for a specific mixture.
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Figure 3. Evolution of R̃2
0ω

2I with driving pressure, from equation (5.6). The four bottom

curves are calculated with f = 26.5 kHz, for ambient radii R̃0 = 2 µm (thick solid line), 3 µm
(dashed line), 4 µm (thin solid line), 5 µm (dash-dotted line). The two top curves are calculated
for R̃0 = 4 µm and, respectively, with f = 50 kHz (dotted line) and f = 100 kHz (+ signs). The
three circles represents the results obtained by FEMLAB full simulations for 4 µm bubbles
driven, respectively, by pressure fields of 0.3, 0.6 and 0.8 driving pressure.

Figure 3 represents R̃2
0ω

2I as a function of the driving pressure, for different
ambient radii and different frequencies. The four bottom curves are calculated for
a frequency of 26.5 kHz, for bubble ambient radii ranging from 2 µm to 5 µm. It
can be seen that R̃2

0ω
2I increases with R̃0 in the range considered. The three circles

represent the value obtained from FEMLAB direct simulations, showing again the
good agreement with analytical results. The two top curves are calculated for a 4 µm
bubble excited, respectively, at 50 kHz (dotted line) and 100 kHz (+ signs): it can be
seen that the mean segregation process increases markedly with frequency for small
driving pressures, but that all curves merge for high driving pressures.

In all cases, a marked increase of R̃2
0ω

2I occurs near P = 1 which is approximately
the Blake threshold (Akhatov et al. 1997; Hilgenfeldt et al. 1998; Louisnard & Gomez
2003). Above this driving pressure value, the bubble dynamics becomes inertially
driven, yielding large time variations of V (t) and its time derivatives, and therefore
large values of the integrand in equation (5.6).

5.4. Parameter-space exploration: oscillatory part

Neglecting terms of order O(Pe−1), the oscillatory concentration at the bubble wall
Cosc(0, τ̂ ) reduces to C̄osc

1 (0, τ̂ )/Pe1/2. Evaluating equation (3.13) at s = 0, we obtain

Cosc(0, τ̂ ) =
β

Pe1/2

[
Csm

0 (0) + 1
]
G(τ̂ ), (5.7)

where

G(τ̂ ) =

(
T̂

2π

)1/2 m=+∞∑
m=−∞
m	=0

hm

|m|1/2
exp

[
i

(
2πm

τ̂

T̂
− εm

π

4

)]
. (5.8)
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Figure 4. (a) Time evolution of function H (τ̂ ) for a 4 µm bubble driven at P =1.1 and
26.5 kHz. The nonlinear period is 122 in this case. The negative peaks corresponds to the huge
positive values taken by V̈ at the main collapse and subsequent afterbounces. (b) Zoom on the
most negative peak of H (τ̂ ) (solid line) translating the origin of abscissas to the location of
this peak. The width of the peak is 9 orders of magnitude smaller than the nonlinear period;
the dashed line is the approximation of H (τ̂ ) defined by (5.10). (c) Solid line, shape of function
G(τ̂ ) given by equation (5.8); dashed line, shape of function H (τ̂ ).

Using equation (2.17) to express the factor β/Pe1/2 in terms of the dimensional
parameters, equation (5.7) becomes

C̄osc
1 (0, τ̂ ) = βmD1/2R̃0ω

3/2
[
Csm

0 (0) + 1
]
G(τ̂ ). (5.9)

In order to identify the contribution of the bubble oscillations independently from the
choice of a specific mixture, the quantity R̃0ω

3/2G(τ̂ ) must be calculated for various
bubble parameters. For small driving pressure, G(τ̂ ) can be evaluated by summing
the series (5.8) without any specific problem, as was done in §5.2. However, for driving
pressures high enough to yield inertial cavitation, evaluation of G(τ̂ ) is subject to a
technical difficulty linked to the shape of function H (τ̂ ) = −2R̈/R2 (figure 4a). Owing
to the huge outward acceleration of the liquid at the end of the bubble collapse,
H (τ̂ ) looks like a series of negative Dirac distributions, the most important being
located at the main collapse, and the other ones at each secondary collapse between
the bubble afterbounces. From the singular shape of function H (τ̂ ), it is expected
that its Fourier spectrum (the coefficients hm in the series (3.12)) spans over a wide
frequency range. Therefore, series (5.8) converges very slowly, thus forbidding any
numerical estimation. This is illustrated in figure 4(b), which shows a magnification
of the most negative peak of H (τ̂ ). It can be seen that the width of the peak is less
than 9 orders of magnitude of the nonlinear period of oscillation, so that one should
sum more than 109 terms in the series to obtain an acceptable result.

We therefore used the following trick: let us denote τ̂min the time at which H (τ̂ )
reaches its highest negative peak amplitude Hmin . We fit H by a negative tooth
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function of amplitude Hmin and width 
τ̂ :

H (τ̂ ) �

⎧⎨
⎩Hmin

(
1 −

∣∣∣∣ τ̂ − τ̂min


τ̂

∣∣∣∣
)

, τ̂ ∈ [τ̂min − 
τ̂, τ̂min + 
τ̂ ],

0, elsewhere,

(5.10)

where 
τ̂ is determined in such a way that the real and fitted peaks have the same
integral over the interval [τ̂1, τ̂2], where τ̂1 and τ̂2 are the locations of the zeros of
H (τ̂ ) at each side of τ̂min:


τ̂ =
1

Hmin

∫ τ̂2

τ̂1

H (τ̂ ) dτ̂ . (5.11)


τ̂ represents physically the characteristic time (in nonlinear form) of the bubble
rebound at the end of the collapse. Figure 4(b) shows the original function H (τ̂ )
(solid line) compared to the approximation obtained by equation (5.10) (dotted line).

The Fourier coefficients of the tooth function can easily be calculated and introduced
into equation (5.8) to calculate G(τ̂ ). This is done in Appendix E and the following
approximation of G(τ̂ ) is obtained:

Gapp(τ̂ ) =

(
T̂

2π

)1/2

Hmin

T̂

π2
τ̂

m=+∞∑
m=1

1

m5/2
sin2

(
mπ


τ̂

T̂

)
cos

[
2mπ

τ̂ − τ̂min

T̂
− π

4

]
.

(5.12)

For very small 
τ̂ , which is the case for inertial cavitation, this series is as difficult to
calculate as the original one in (5.8). However, a good approximation of Gapp(τ̂ ) can
be found and is detailed in Appendix E (see equations (E 3) and (E 12)). Figure 4(c)
shows the typical shape of Gapp(τ̂ ): it decreases rapidly down to a minimum located
slightly after the minimum of H and then slowly relaxes to 0. We first restrain our
primary interest to the extremal value attained by C̄osc

1 (0, τ̂ ) over one period, so that
only the minimum value of Gapp(τ̂ ) is required. It is shown in Appendix E that an
excellent estimate of this minimum is

Gmin
app =

8Γ (1/2)

3
√

3π
Hmin
τ̂ 1/2. (5.13)

The solid line in figure 5 displays the evolution of R̃0ω
3/2|Gmin | obtained by summing

directly series (5.8) along with a 215 points FFT of H (τ̂ ), while the dashed line
represents R̃0ω

3/2|Gmin
app | calculated from the approximate equation (5.13) for a 4 µm

argon bubble oscillating at 26.5 kHz in water. Both results are in agreement up to
about P =1.05 ( which corresponds approximately to the Blake threshold) and they
markedly diverge above the threshold, which demonstrates that for inertial motion
of the bubble, H (τ̂ ) becomes too sharp to be represented correctly by a reasonable
Fourier expansion. Therefore, in the inertial regime, the approximate equation (5.13)
must be used to calculate Gmin .

The dash-dotted line in figure 5 also displays the value of R̃0ω
3/2|Gmin

app | calculated
from (5.13), but with a refined bubble interior model, taking into account heat
transport and water condensation/evaporation at the bubble wall (Toegel et al. 2000;
Storey & Szeri 2001). At low driving pressures, the results are comparable, but
above the Blake threshold, the refined model predicts values lower by one order
of magnitude. Such a result could be expected since it is known that taking into
account heat transport in the bubble interior yields a less violent collapse than with
the isothermal model, and therefore decreases the amplitude of function H . Similar
conclusions have been drawn for other bubble phenomena directly linked to the
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Figure 5. Solid line, evolution of R̃0ω
3/2|Gmin | calculated by summing the series in (5.8) from

a 215 points FFT of H (τ̂ ); dashed line, R̃0ω
3/2|Gmin

app | calculated from (5.13). Both curves are
obtained for a 4 µm argon bubble excited at 26.5 kHz, assuming an isothermal gas behaviour.
The dash-dotted line also represents the evolution of R̃0ω

3/2|Gmin
app |, but calculated with the

refined model of the bubble interior. The values obtained are about one order of magnitude
smaller than with the isothermal model.
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Figure 6. Evolution of R̃0ω
3/2|Gmin

app | calculated from (5.13), for a 4 µm argon-bubble excited at
26.5 kHz (solid line), 50 kHz (dashed line) and 100 kHz (dash-dotted line). The bubble interior
refined model was used in all cases.

violence of the collapse, such as Rayleigh–Taylor shape instabilities (Lin, Storey &
Szeri 2002). Since the refined model is believed to be more realistic than the isothermal
one, it will be used in every result presented hereinafter.

Figure 6 displays the influence of frequency on the oscillatory field. As frequency
increases, there is a stronger effect at low amplitude but, for high amplitudes, increasing
the frequency reduces the oscillatory segregation effect, despite the ω3/2 scaling law.
This can be explained easily by the fact that increasing the frequency limits the
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Figure 7. (a) Comparison of R̃0ω
3/2|Gmin

app | evaluated from (5.13) (solid line) and from (5.15)
(dashed line) for a 4 µm argon bubble excited at 26.5 kHz. (b) Characteristic time 
t of
the bubble rebound for the same bubble, calculated from (5.16) (solid line). The dashed line
represents 42
t , which is the time necessary for the oscillatory segregation to reach one tenth
of its maximum value.

expansion phase of the bubble in the inertial regime, which in turn reduces the
violence of the collapse, and therefore the peak value attained by the H function.

Finally, a more practical sense can be given to the time-interval 
τ̂ appearing in
(5.13): since H (τ̂ ) = −2R̈/R2, and using the definition (3.1) of the nonlinear time,
(5.11) can also be expressed as


τ̂ =
−2

Hmin

∫ τ2

τ1

R2(τ )R̈(τ ) dτ.

Times τ1 and τ2 are located, respectively, closely before and closely after the time at
which the bubble reaches its minimum radius. Therefore, R stays close to Rmin in the
interval [τ1, τ2], so that Hmin � −2R̈max/R2

min . Therefore,


τ̂ � R4
min(Ṙ(τ2) − Ṙ(τ1))

R̈max

,

and since by definition τ1 and τ2 are the zeros of R̈, Ṙ(τ1) and Ṙ(τ2) are the minimum
and maximum bubble velocities attained before and after the rebound, respectively,
which are in fact the minimum and maximum velocities of the bubble over one
acoustic period. Thus,


τ̂ � R4
min

Ṙmax − Ṙmin

R̈max

. (5.14)

Injecting this value into (5.13), and setting Hmin � −2R̈max/R2
min , we obtain

Gmin
app � −8Γ (1/2)

3
√

3π
[R̈max (Ṙmax − Ṙmin)]

1/2, (5.15)

which can easily be evaluated once the bubble dynamics is known. Figure 7(a) shows
that equation (5.15) gives a reasonable approximation of Gmin

app .
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Apart from the minimum value reached by G, it is also of interest to obtain an
order of magnitude of the relaxation time of G (see solid line figure 4c). It is shown
in Appendix E that G reaches one tenth of its minimum value after a relaxation
time of 42
τ̂ past τ̂min . Evaluating 
τ̂ from (5.14), a ready-to-use estimate of the
oscillatory segregation duration can be obtained. The dimensional rebound time 
t

corresponding to 
τ̂ can be obtained by first converting the latter in linear time by

τ � 
τ̂/R4

min and setting 
t =
τ/ω. We obtain:


t � 1

ω

Ṙmax − Ṙmin

R̈max

. (5.16)

Figure 7(b) displays the dimensional rebound characteristic time 
t in ns (solid line)
for a 4 µm argon bubble at 26.5 kHz: it rapidly drops from about 300 ns for P =1 to
10 ps for P = 1.5. For practical applications, the dashed line represents 42
t , during
which the oscillatory segregation stays larger than one tenth of its maximal value.
This is a valuable result, if one wishes to compare the segregation duration to a
characteristic time of some process likely to be enhanced by species segregation.

6. Application and discussion
The above results should now be applied to real binary mixtures to assess the import-

ance of the phenomenon. Rather than selecting specific mixtures, we will try to cover a
wide range of molecule sizes by taking typical values for the other mixture parameters.

We first combine equations (2.14), (5.5) and (5.7) to obtain the segregation ratio at
the bubble wall

ωA(0, τ̂ )

ωA0

= exp(βI )

(
1 +

β

Pe1/2
G(τ̂ )

)
. (6.1)

Having practical applications in view, we are interested in the average and peak
concentrations at the bubble wall, so that in what follows, we will calculate the two
quantities:

Ωm = exp(βI ), (6.2a)


Ωm = exp(βI )
β

Pe1/2
Gmin, (6.2b)

where Gmin < 0 is calculated from (5.13). The two quantities Ωm and 
Ωm should
be interpreted as follows: the first is the average concentration at the bubble wall
and the second is the maximum algebraic variation of the concentration around the
average, over an oscillation period.

Before specifying the mixture, it is worth recalling that β depends on two physical
properties (see (2.18)): on one hand, the relative densities of species A and the host
liquid, on the other hand, the molar weight of species A. The latter may vary in
a much larger range than the former, so that in what follows, we will study the
predictions of the model for a mixture of water with a heavier species A of apparent
density ρA = MA/V̄A = 2000 kg m−3, and molecular weights MA ranging from 100 to
107 Da (1 Dalton corresponds to a molar weight of 1 g mol−1).

The temperature of the mixture is set to T = 298 K. Consistently with the dilute
mixture hypothesis detailed in Appendix A, the density ρ of the mixture is approxi-
mated by the density of pure water. To calculate the oscillatory part under the same
conditions, the additional datum of the diffusion coefficient is required. Since we
consider a set of species where molecular weight varies over a wide range, the influence
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Figure 8. Segregation ratio in a mixture of water with molecules of apparent density
2000 kgm−3, of molecular weight MA ranging from 100 to 107 Da around a 4 µm argon
bubble driven at 26.5 kHz: (a) smooth segregation ratio defined by (6.2a), (b) oscillatory peak
segregation ratio defined by (6.2b).

of the molecular size on the diffusion coefficient D should be taken into account.
Following the Stokes–Einstein theory, the diffusion coefficient can be expressed as

D =
kBT

6πµRA

, (6.3)

where kB is the Boltzmann constant and RA the hydrodynamic radius, estimated
from the molecular weight and apparent density of species A by

Na
4
3
πR3

AρA = MA, (6.4)

where Na is the Avogadro number. Under these conditions, the parameter β̃m

defined by (2.18) ranges from −10−5 to −1 s2 m−2, the hydrodynamic radius from
0.27 to 12.5 nm, and the diffusion coefficient from 7.9 × 10−10 to 1.7 × 10−11 m2 s−1.

We consider the case of a 4 µm argon bubble excited at f = 26.5 kHz. The
corresponding Péclet number for the above conditions ranges from 3 360 to 15 600,
which justifies a posteriori the asymptotic expansions in terms of Pe−1/2, and the
non-dimensional parameter β ranges from −4.6 × 10−6 to −4.6 × 10−1.

The order of magnitude of the average bubble wall concentration of such molecules
is shown in figure 8(a): the Ωm curve for the smallest molecules (MA = 100 Da)
remains indistinguishable from 1, even for high driving pressure, so that the mixture
is unsegregated on average. As the weight of the molecules increases, their average
depletion at the bubble wall becomes increasingly high for a given driving pressure. A
nearly total depletion of the heaviest molecules (MA = 5 × 106 and 107 Da) can even
be observed for driving pressures slightly above the Blake threshold.

The amplitude of the oscillatory concentration variation 
Ωm is shown in
figure 8(b), where it can be seen that the smallest molecule is already over-concentrated
by a factor of 2 at P = 1.5. As MA increases, 
Ωm first increases, and then decreases
again for very large molecules. This illustrates the opposite effects of the two factors
exp(βI ) and βPe−1/2Gmin in (6.2b). For the smallest molecules, the increase of |Gmin |
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with P dominates over the decrease of exp(βI ), so that 
Ωm globally increases with
driving pressure, up to nearly 500 for MA =100 000 Da and P = 1.6. For larger mole-
cules, the opposite occurs, so that the peak value 
Ωm becomes increasingly masked
by the strong average depletion Ωm and hardly departs from 0 for MA = 107 Da.

Thus, it is seen that both average depletion and peak periodic over-concentration
at the bubble wall compete, depending on the driving level and the molecule sizes.
This suggests that molecules or nano-particles that could undergo some growth or
agglomeration process would be periodically concentrated against the bubble wall
as long as they are sufficiently small, but would be held far from the bubble on
average, as they reach some critical size. This may have some strong consequences on
polymerization or nano-particle agglomeration processes, for example.

The present results may also help us to understand the positive effect of acoustic
cavitation on crystal nucleation from a solute (see for example Lyczko et al. 2002,
for potassium sulfate crystallization). Homogeneous nucleation of crystals in liquids
is a first-order phase transition, which occurs as the solute concentration exceeds the
saturation concentration. There is a fairly general agreement on the so-called classical
nucleation theory (Kaschiev 2000), which states that in a metastable solution, the
nucleation process occurs through progressive accumulation of solute molecules,
forming multi-mers called ‘clusters’, up to a critical radius called nucleus, from which
a solid crystal is then free to grow. There is indeed experimental evidence of the
existence of such clusters, and their stratification under gravity has been observed in a
sedimentation column (Mullin & Leci 1969; Larson & Garside 1986). Although stated
differently by these authors, the process invoked to explain cluster sedimentation obeys
the pressure diffusion equation considered in this paper. We may therefore reasonably
conjecture that the pressure diffusion effect around an oscillating bubble would also
tend to segregate these clusters to a much larger extent than gravity, in view of the
respective accelerations involved. The present conclusions show that this is indeed the
case, and predict that if the nucleating species is heavier than the liquid, its clusters
would be periodically pushed against the bubble wall. There, since the collision prob-
ability varies with the square of the concentration, they could undergo more frequent
attachment events and create larger clusters. Above a critical size, these clusters would
then be held far from the bubble in the liquid, as suggested by figure 8(a).

The conclusions on the smooth effect should be tempered by considerations on the
bubble stability. The smooth effect requires a very large number of acoustic periods
to build up, so that its potential appearance is conditioned by the bubble stability on
such a large time scale. If this stability is well established in single-bubble experiments,
there is no definitive conclusion in multi-bubble fields. This issue has been discussed by
Louisnard & Gomez (2003). Even in the most optimistic case, inertial bubbles would
rapidly increase their size by rectified diffusion up to the fragmentation threshold, in a
time too small for the smooth effect to build up completely. However, partial build-up
remains possible, and may yield a noticeable smooth effect on the largest molecules.

Finally, despite the compressibility effects being arbitrarily neglected to reduce the
mathematical complexity of the problem, it is nevertheless an important issue. A
spherical shock wave can build up when the bubble rebounds after the collapse,
and the corresponding steepening of the pressure profile may therefore enhance the
oscillatory effect. Such spherical shocks are non-monotonic (see for example figures 7
and 8 of Fujikawa & Akamatsu 1980) so that just after the collapse, the heaviest
species would be concentrated in a thin layer of fluid surrounding the shock, and
would travel with the shock. An important consequence of this feature is that the
excess concentration would not remain located near the bubble wall, but would be
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transported toward the bulk liquid. In summary, shock-waves would not only enhance
the oscillatory effect, but they may also extend its influence to a larger spatial region.

7. Conclusion
We have proposed an analytic method to solve the general problem of pressure-

gradient-forced diffusion of two non-volatile species around a bubble oscillating
radially in the mixture. The method yields the concentration field in the mixture
around the bubble in two parts: a smooth part, building over a number of acoustic
periods of the order of the Péclet number Pe and asymptotically constant in time, and
an oscillatory part. Both expressions are fully analytic and can be easily calculated
for a given bubble dynamics.

In the case of inertial cavitation, the oscillatory effect results in a large excess
concentration of the heaviest species at the bubble wall at each bubble collapse. This
excess is noticeable even for small molecules, and relaxes with a characteristic time
which is more than one order of magnitude larger than the characteristic duration
of the bubble rebound. Conversely, the smooth effect pushes the heaviest species far
from the bubble. It remains unimportant for small molecules, even for strong driving
pressures, but may almost deplete the bubble wall of large molecules. Both smooth
and oscillatory effects increase with driving pressure. The smooth effect increases with
the frequency of the driving. The oscillatory effect increases with frequency for small
driving pressure, but conversely, decreases with frequency in the inertial regime.

For large molecules or nano-particles around an inertial bubble, the two smooth and
oscillatory effects compete: the oscillatory effect dominates for the smallest molecules,
while the smooth one is prominent for the largest ones. This has strong implications for
any physico-chemical process involving molecules or particles undergoing a growing
or agglomeration process, and suggests that species smaller than a given size would
be periodically pushed and concentrated near the bubble wall, while the largest ones
are on average held far from the bubble. Polymerization, agglomeration or cluster
formation in crystal nucleation fall in this specific case and this behaviour may be
partly responsible for the reported enhancement of nucleation by cavitation.

This work is supported by an ECOS-South collaboration program between France
and Chile under grant number C03E05.

Appendix A. Linearization of the convection–diffusion equation
We assume an ideal mixture of two liquids, so that volume is additive. Under these

conditions, the mean density of the mixture is

ρ =
xAMA + xBMB

xAV̄A + xBV̄B

, (A 1)

where xi , Mi and V̄i are the mole fraction, molecular weight and partial molal volume
of species i, respectively. Using the relation xi = Mωi/Mi between mole and mass
fraction, we readily obtain

ρ =
1

ωAv̄A + ωBv̄B

, (A 2)

where the notation v̄i = V̄i/Mi has been used. The mean molecular weight of the
mixture is defined by

1

M
=

ωA

MA

+
ωB

MB

. (A 3)
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Replacing ωB by 1 − ωA, we can express the density of the solution by

ρ =
1

vB

[1 + α1ωA]−1 ,

and the two contributions to diffusion in (2.6) become

ρ∇ωA =
1

vB

[1 + α1ωA]−1 ∇ωA, (A 4a)

MAMB

MRT
ωA

(
V̄A

MA

− 1

ρ

)
∇p =

MA

RT
α1ωA

(1 − ωA)(1 + α2ωA)

1 + α1ωA

∇p, (A 4b)

where parameters α1 and α2 are defined by:

α1 =
v̄A

v̄B

− 1, α2 =
MB

MA

− 1. (A 5a, b)

Therefore, it can be seen that if we neglect terms of order O(ω2
A), O(α2

1ω
2
A) and

O(α2
2ω

2
A), equation (2.6) becomes

1

v̄B

(
∂ωA

∂t
+ v · ∇ωA

)
= D

1

v̄B

∇ ·
[

∇ωA +
MA

RT
ωA(v̄A − v̄B)∇p

]
, (A 6)

which is equation (2.7).

Appendix B. Solution of the oscillatory problem and splitting
Each member of the hierarchy of oscillatory problems may be expressed as a

non-homogeneous diffusion partial differential equation

∂Cosc
i

∂τ̂
− ∂2Cosc

i

∂s2
= F i

(
R(τ̂ ), s, Cosc

0 , . . . , Cosc
i−1

)
, (B 1)

with a Neumann inhomogeneous boundary condition of the form:

∂Cosc
i

∂s
(s = 0, τ̂ ) = Bi

(
R(τ̂ ), Cosc

i−1

)
. (B 2)

We treat the problem in the manner of Fyrillas & Szeri (1995), with the difference
that here we have a Neumann condition rather than a Dirichlet one.

The oscillatory solution Cosc
i should vanish for s → +∞ since the outer solution of

the boundary-layer problem is imposed to be identically 0. The asymptotic oscillatory
solutions C̄osc at any order have T periodicity in the τ variable, and therefore T̂ = τ̂ (T )
periodicity in the τ̂ variable. Thus, the functions F i and Bi are also periodic in τ̂ and
we expand them in Fourier series, as well as C̄osc . Setting ωm =2mπ/T̂ , we obtain

C̄osc
i (s, τ̂ ) =

m=+∞∑
m=−∞

cm(s) exp(iωmτ̂ ),

F i(s, τ̂ ) =

m=+∞∑
m=−∞

fm(s) exp(iωmτ̂ ),

Bi(τ̂ ) =

m=+∞∑
m=−∞

bm exp(iωmτ̂ ).
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Substituting these series in the problem (B 1)–(B 2), we obtain a set of differential
equations relating the coefficients of these series. For any m 	= 0, we obtain

d2cm(s)

ds2
− iωmcm(s) = −fm(s), (B 3)

dcm(s)

ds
(s = 0) = bm. (B 4)

The general solution of (B 3) vanishing for s → ∞ is

cm(s) = Am exp(−kms) − 1

km

∫ ∞

s

fm(s ′) sinh[km(s − s ′)] ds ′, (B 5)

with

km = (1 + εmi)

(
|ωm|
2

)1/2

=

(
2|m|π

T̂

)1/2

eiεmπ/4,

where εm = sgn(m). The boundary condition at s = 0, (B 4), yields the following
expression for Am:

Am = −bm

km

− 1

km

∫ ∞

0

fm(s ′) cosh(kms ′) ds ′. (B 6)

The zeroth-order harmonics differential equation (m = 0) takes a different form:

d2c0(s)

ds2
= −f0(s),

with the associated boundary condition

dc0(s)

ds
(s = 0) = b0.

The solution vanishing for s = ∞ is

c0(s) =

∫ s

∞

∫ ∞

s ′
f0(s

′′) ds ′′ ds ′.

Applying the Neumann boundary condition at s = 0 yields:

b0 =

∫ ∞

0

f0(s
′) ds ′,

and recognizing that b0 = 〈Bi〉τ̂ and f0(s) = 〈F i(s)〉τ̂ , the separation condition finally
reads 〈

Bi
〉

τ̂
=

∫ +∞

0

〈
F i(s)

〉
τ̂

ds. (B 7)

Finally, in the special case where F i is identically zero, which is the case in the present
paper for i = 1, the separation condition merely implies that 〈Bi〉τ̂ should be 0, and
the oscillatory field reads in this case:

C̄osc
i (0, τ̂ ) = −

(
T̂

2π

)1/2 m=+∞∑
m=−∞
m	=0

bm

|m|1/2
exp

[
i

(
2πm

τ̂

T̂
− εm

π

4

)
− (εmi + 1)

(
|m|π
T̂

)1/2

s

]
.

(B 8)
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The presence of both m1/2 in the denominator and the π/4 phase lag recalls the fact
that C̄osc

i (0, τ̂ ) is the half-order integral of Bi(τ̂ ) as could be proved directly by solving
problem (B 1), (B 2) by Laplace transforms.

Appendix C. Solution of the second-order oscillatory problem
The second-order oscillatory problem reads

∂Cosc
2

∂τ̂
=

∂2Cosc
2

∂s2
+

∂

∂s

[
A′

1s
∂Cosc

1

∂s
+ βB ′

0C
osc
1

]
, (C 1a)

∂Cosc
2

∂s
(0, τ̂ ) + βH (τ̂ )Cosc

1 (0, τ̂ ) = −G1 − βH (τ̂ )Csm
1 (0, τ ), (C 1b)

Cosc
2 (s → ∞) = 0. (C 1c)

The splitting condition (B 7) reads therefore:

〈
−βH (τ̂ )Cosc

1 (0, τ̂ ) − G1 − βH (τ̂ )Csm
1 (0, τ )

〉
τ̂

=

〈∫ ∞

0

∂

∂s

(
A′

1s
∂Cosc

1

∂s
+ βB ′

0C
osc
1

)
ds

〉
τ̂

. (C 2)

Using (3.8) and (3.10c), the integral on the right-hand side of (C 2) can also be written
as

lim
s→∞

(
A′

1s
∂Cosc

1

∂s
(s, τ̂ )

)
− βH (τ̂ )Cosc

1 (0, τ̂ ). (C 3)

It can be seen from (3.13) that the first term of (C 3) is zero, so that (C 2) finally
becomes

G1 = −β
〈
H (τ̂ )

[
Csm

1 (0, τ )
]〉

τ̂
. (C 4)

Appendix D. Solution of the smooth problem
The second- and third-order smooth equations are

∂Csm
2

∂τ
= −∂Csm

0

∂λ
+

∂

∂σ

[
A(σ, τ )

∂Csm
0

∂σ
+ βB(σ, τ )

(
Csm

0 + 1
)]

, (D 1a)

∂Csm
3

∂τ
= −∂Csm

1

∂λ
+

∂

∂σ

[
A(σ, τ )

∂Csm
1

∂σ
+ βB(σ, τ )Csm

1

]
. (D 1b)

The expansion (4.2) must be uniformly valid and therefore should not contain secular
terms increasing unbounded when τ → ∞. This non-secular behaviour will be satisfied
by Csm

2 and Csm
3 only if the right-hand sides of equations (D 1 a,b) have zero τ -averages.

Therefore, Csm
0 and Csm

1 should fulfil the respective non-secularity conditions

∂Csm
0

∂λ
=

∂

∂σ

[
〈A(σ, τ )〉τ

∂Csm
0

∂σ
+ β〈B(σ, τ )〉τ

(
Csm

0 + 1
)]

, (D 2a)

∂Csm
1

∂λ
=

∂

∂σ

[
〈A(σ, τ )〉τ

∂Csm
1

∂σ
+ β〈B(σ, τ )〉τC

sm
1

]
, (D 2b)

where the independence of Csm
0 and Csm

1 on τ has been used.
The associated boundary conditions at the bubble wall, (2.24b), can be obtained

from the separation constants G0 and G1, (3.11) and (3.74). Further using the
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independence of Csm
0 and Csm

1 on the fast variable τ , these boundary conditions
are

∂Csm
0

∂σ
(0, λ) + β〈H (τ̂ )〉τ̂

[
Csm

0 (0, λ) + 1
]

= 0, (D 3a)

∂Csm
1

∂σ
(0, λ) + β 〈H (τ̂ )〉τ̂ Csm

1 (0, λ) = 0. (D 3b)

Moreover, from the definition (2.25) of H , the nonlinear average 〈H (τ̂ )〉τ̂ is also

〈H 〉τ̂ =

〈
B(0, τ )

A(0, τ )

〉
τ̂

=

〈
V 4/3B(0, τ )/A(0, τ )

〉
τ

〈V 4/3〉τ

=
〈B(0, τ )〉τ

〈A(0, τ )〉τ

,

since A(0, τ ) = V 4/3, so that the zeroth- and first-order boundary conditions, (D 3 a,b),
at the bubble wall may also be written as

〈A(0, τ )〉τ

∂Csm
0

∂σ
(0, λ) + β〈B(0, τ )〉τ

[
Csm

0 (0, λ) + 1
]

= 0, (D 4a)

〈A(0, τ )〉τ

∂Csm
1

∂σ
(0, λ) + β〈B(0, τ )〉τC

sm
1 (0, λ) = 0. (D 4b)

We now seek the asymptotic solutions Csm
i,∞ for i = 0, 1 of (D 2 a,b), by setting

∂Csm
i,∞/∂λ = 0 for i = 0, 1 in these equations and integrating once with respect to σ .

Making use of boundary conditions (D 4 a,b), this integration yields

〈A(σ, τ )〉τ

∂Csm
0,∞

∂σ
+ β〈B(σ, τ )〉τ

(
Csm

0,∞ + 1
)

= 0, (D 5a)

〈A(σ, τ )〉τ

∂Csm
1,∞

∂σ
+ β〈B(σ, τ )〉τC

sm
1,∞ = 0. (D 5b)

Now using the condition at infinity, (2.26), the zeroth-order (D 5a) can be integrated
as

Csm
0,∞(σ ) = exp

[
β

∫ ∞

σ

〈B(σ ′, τ )〉τ

〈A(σ ′, τ )〉τ

dσ ′
]

− 1. (D 6)

Besides, integration of the first-order equation (D 5b) can only yield the null solution
Csm

1,∞ = 0 in order to fulfil the condition at infinity, (2.26). It does not imply, however,
that Csm

1 (σ, λ) is zero for finite λ, but merely states that its asymptotic limit for λ→ ∞
is zero.

The physical meaning of the asymptotic smooth solution may be understood from
(D 5 a,b). The average pressure diffusion flux (the B term) is exactly balanced by the
average Fick diffusion flux (the A term), and therefore the smooth concentration field
stays constant. The unsteady term in the smooth equations (D 2 a,b) represents the
transitory non-equilibrium between the two average diffusion processes.

Appendix E. Numerical estimation of the oscillatory asymptotic concentration
field

We first set x =2πτ̂ /T̂ , xmin = 2πτ̂min/T̂ and 
x = 2π
τ̂/T̂ . In the new variable x,
the tooth-approximation (5.10) can be written as

H (x) �
{

Hmin

(
1 −

∣∣∣x − xmin


x

∣∣∣) , x ∈ [xmin − 
x, xmin + 
x],

0, elsewhere,
(E 1)
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with Hmin < 0. This function can be Fourier-expanded as

H (x) =
Hm
x

2π
+

2

π
x
Hmin

m=+∞∑
m=−∞
m	=0

1

m2
sin2

(
m
x

2

)
exp[im(x − xmin)], (E 2)

and function G defined by (5.8) can therefore be approximated as

Gapp(τ̂ ) =

(
T̂

2π

)1/2

Hmin

4

π
x
F (x), (E 3)

with

F (x) =

m=+∞∑
m=1

1

m5/2
sin2

(
m
x

2

)
cos

[
m(x − xmin) − π

4

]
, (E 4)

which is (5.12). In order to obtain an estimate of the maximum of F (x), we first
reformulate it as:

F (x) = C(x) + S(x), (E 5)

with

C(x) =
1

4
√

2

+∞∑
m=1

1

m5/2
[2 cos m(x − xmin)

− cos m(x − xmin + 
x) − cos m(x − xmin − 
x)] (E 6a)

S(x) =
1

4
√

2

+∞∑
m=1

1

m5/2
[2 sin m(x − xmin)

− sinm(x − xmin + 
x) − sinm(x − xmin − 
x)]. (E 6b)

Let us set:

Z(X) =

+∞∑
m=1

m−1/2(cosmX + sinmX). (E 7)

It can be seen that, differentiating (E 5), (E 6) twice, F ′′(x) is the sum of three series
of the form (E 7):

F ′′(x) =
1

4
√

2
[Z(x − xmin − 
x) + Z(x − xmin + 
x) − 2Z(x − xmin)] . (E 8)

A theorem by Zygmund (1959) states that

+∞∑
m=1

m−β cosmX �
X→0

|X|β−1
Γ (1 − β) sin π

β

2
, (E 9a)

+∞∑
m=1

m−β sinmX �
X→0

sgn(X) |X|β−1
Γ (1 − β) cos π

β

2
, (E 9b)

for any β ∈ [0, 1[. Therefore, taking β = 1/2, we obtain

Z(X) �
X→0

H(X) |X|−1/2
√

2Γ (1/2) , (E 10)
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where H is the Heaviside function. For small enough 
x, any x in the neighbourhood
of xmin is also in the neighbourhood of xmin − 
x and xmin + 
x, so that, from (E 8),
we can approximate F ′′(x) as

F ′′(x) � F ′′
app(x)

=
Γ (1/2)

4

[
H(x − xmin − 
x)

|x − xmin − 
x|1/2
+

H(x − xmin + 
x)

|x − xmin + 
x|1/2 − 2
H(x − xmin)

|x − xmin |1/2

]
. (E 11)

Integrating twice yields

F (x) � Fapp(x)

=
Γ (1/2)

3
[f (x − xmin − 
x) + f (x − xmin + 
x) − 2f (x − xmin)] + Ax + B,

(E 12)

where f is defined by

f (X) = H(X) |X|3/2 ,

and A, B are two integration constants. Clearly, A should be 0 to avoid a spurious
discontinuity of F at x = 2nπ and B must be calculated so that the approximation of
F has a zero average on [0, 2π], as does the original function (E 4). This condition
yields

B =
Γ (1/2)

15π

[
2(2π − xmin)

5/2 − (2π − xmin − 
x)5/2 − (2π − xmin + 
x)5/2
]
.

It can be easily checked that Fapp(x) has a maximum at x = xmin + 
x/3 whose value
is

F max
app (x) =

2Γ (1/2)

3
√

3

x3/2 + B. (E 13)

Owing to the approximation used to obtain (E 11), it is clear that approximation
(E 12) becomes better for smaller 
x. Figures 9(a) and 9(b) shows a comparison of
the calculated series (E 4) (solid line) and its approximation by (E 12) (dashed line)
for xmin = π and 
x = π/2 (figure 9a) or 
x = π/10 (figure 9b). For 
x as large as
π/2 (in this case the peak spans over half of the interval), the maximum of F is still
predicted with a relative error as low as 8 %. For 
x = π/10, it is reduced to 1.25 %.
Moreover, it can be noted that the approximation of F is good not only near xmin ,
where it should be, but also over the whole interval [0, 2π].

The quality of the approximation of maxx F can be seen in figure 9(c), in which
the relative error ε = |F max − F max

app |/F max is displayed as a function of 
x: since for

a typical inertial bubble, 
x amounts to 10−9, it is clear that the approximation given
by (E 13) is excellent. We also draw the value of the constant B relative to F max

app on
figure 9(d ), which shows clearly that B can easily be neglected for 
x smaller than
10−2.

Finally, it is of interest to know the characteristic relaxation time of function F

after it has reached its maximum. It can be shown after some algebra that F reaches a
fraction of its maximum value αF max after a time approximately equal to 27
x/64α2.
Applying this formula shows that F is still equal to one fifth of its maximum value
after 10.5
x, and to one tenth after 42
x.
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Figure 9. (a,b) Comparison of function F calculated numerically from (E 4) (solid line) with
function F calculated by approximation (E 12) (dashed line). The dash-dotted line recalls
the shape of the tooth approximation, (E 1), of function H . (a) 
x = π/2. (b) 
x = π/10. (c)
Relative error on the maximum value of F calculated from (E 12), as 
x is varied. (d ) Ratio
B/Fmax as 
x is varied.
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